functorial isomorphism - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

functorial isomorphism - traduction vers russe

CONCEPT IN CATEGORY THEORY
Functorial point

functorial isomorphism      

математика

функторный изоморфизм

isomorphic graphs         
  • 100px
  • The exception to Whitney's theorem: these two graphs are not isomorphic but have isomorphic line graphs.
BIJECTION BETWEEN THE VERTEX SET OF TWO GRAPHS
Graph nonisomorphism problem; Nonisomorphism problem; Isomorphic graph; Isomorphic graphs; Non-isomorphic graphs; Tree isomorphism

математика

изоморфные графы

isomorphy         
IN MATHEMATICS, INVERTIBLE HOMOMORPHISM
Isomorphic; Isomorphism (algebra); Isomorphisms; List of nonisomorphic groups; List of nonisomorphic; Isomorphic (mathematics); Isomorphous; Isomorphy; Canonical isomorphism; Isomorphism (category theory)

общая лексика

мономорфизм

Définition

isomorphic
<mathematics> Two mathematical objects are isomorphic if they have the same structure, i.e. if there is an isomorphism between them. For every component of one there is a corresponding component of the other. (1995-03-25)

Wikipédia

Element (category theory)

In category theory, the concept of an element, or a point, generalizes the more usual set theoretic concept of an element of a set to an object of any category. This idea often allows restating of definitions or properties of morphisms (such as monomorphism or product) given by a universal property in more familiar terms, by stating their relation to elements. Some very general theorems, such as Yoneda's lemma and the Mitchell embedding theorem, are of great utility for this, by allowing one to work in a context where these translations are valid. This approach to category theory – in particular the use of the Yoneda lemma in this way – is due to Grothendieck, and is often called the method of the functor of points.

Traduction de &#39functorial isomorphism&#39 en Russe